A组
1.(1)a(a+b-c).(2)y(x²-2x-5y).(3)2x(xy-3).
(4)7m(2m+3n).(5)-7x²y²(y+4x).(6)-5x7y6(x+5).
2.(1)-2b(a-2)(3a-4).(2)(x-1)(a+b+c).
(3)5(x-y)(2ax-2ay+b).(4)a(a-b)²(1-b).
3.(1)(2x+y)(2x-y)
(2)(ab+c)(ab-c).
(3)
(4)3(5x-2)(x-2).
4.(1)(3x+1)².
(2)(4a+3b)².
(3)
(5)(a+b-6)².(6)(2x+m+n)².
B组
5.(1)a(a-1)².(2)3ma(a+1)².
(3)-5x²y(x-1)².(4)n(m+7)².
6.(1)(x+2)²(x-2)².
(2)(x+3)²(x-3)².
(3)(4x²+1)(2x+1)(2x-1).
(4)(x+y)(x-y)².
7.(x+5)².
C组
8.(1)512-4×511+10×510=510×(5²-4×5+10)=15×510=3×511,所以512-4×511+10×510能被3整除.
(2)(4n²+5)²-9=(4n²+5+3)(4n²+5-3)=4(n²+2)×2(2n²+1)=8(n²+2)(2n²+1),
所以(4n²+5)²-9总能被8整除.
(3)设两个连续的奇数分别为2n+3和2n+1.
则(2n+3)²-(2n+1)²=(2n+3+2n+1)(2n+3-2n-1)=4(n+1)×2=8(n+1),
所以两个连续奇数的平方差能被8整除.
9.-155.